Data compression to define information content of hydrological time series

نویسنده

  • S. V. Weijs
چکیده

When inferring models from hydrological data or calibrating hydrological models, we are interested in the information content of those data to quantify how much can potentially be learned from them. In this work we take a perspective from (algorithmic) information theory, (A)IT, to discuss some underlying issues regarding this question. In the information-theoretical framework, there is a strong link between information content and data compression. We exploit this by using data compression performance as a time series analysis tool and highlight the analogy to information content, prediction and learning (understanding is compression). The analysis is performed on time series of a set of catchments. We discuss both the deeper foundation from algorithmic information theory, some practical results and the inherent difficulties in answering the following question: “How much information is contained in this data set?”. The conclusion is that the answer to this question can only be given once the following counter-questions have been answered: (1) information about which unknown quantities? and (2) what is your current state of knowledge/beliefs about those quantities? Quantifying information content of hydrological data is closely linked to the question of separating aleatoric and epistemic uncertainty and quantifying maximum possible model performance, as addressed in the current hydrological literature. The AIT perspective teaches us that it is impossible to answer this question objectively without specifying prior beliefs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HydroZIP: How Hydrological Knowledge can Be Used to Improve Compression of Hydrological Data

From algorithmic information theory, which connects the information content of a data set to the shortest computer program that can produce it, it is known that there are strong analogies between compression, knowledge, inference and prediction. The more we know about a data generating process, the better we can predict and compress the data. A model that is inferred from data should ideally be...

متن کامل

Hydrological Drought Forecasting Using Stochastic Models (Case Study: Karkheh watershed Basin)

Hydrological drought refers to a persistently low discharge and volume of water in streams and reservoirs, lasting months or years. Hydrological drought is a natural phenomenon, but it may be exacerbated by human activities. Hydrological droughts are usually related to meteorological droughts, and their recurrence interval varies accordingly. This study pursues to identify a stochastic model (o...

متن کامل

استفاده از مدل‌های غیر قطعی در پیش‌بینی دبی متوسط ماهیانه با استفاده از مدل های سری زمانی(مطالعه موردی: چشمه سلیمانیه کاشان)

Different types of time series analysis models are commonly used for predicting hydrological factors. In this study, the situation of Soleimanieh spring discharge in Kashan was investigated using various time series models and mean monthly flow during 11 year period. Then, spring discharge predicted using the best modals for future 9 years. In this research, the data were analyzed using 12 time...

متن کامل

Evaluation of SARIMA time series models in monthly streamflow estimation in Idanak hydrometry station

prediction of hydrological variables is a highly effective tool in water resource management. One of the important tools for modeling hydrological processes is the use of time series modeling and analysis. River series production series can be used by time series models in various studies such as drought, flood, reservoir systems design and many other purposes For this purpose, monthly flow dat...

متن کامل

Wavelet analysis of GRACE K-band range rate measurements related to Urmia Basin

Space-borne gravity data from Gravity Recovery and Climate Experiment (GRACE), as well as some other in situ and remotely sensed satellite data have been used to determine water storage changes in Lake Urmia Basin (Iran). As usual, the GRACE products are derived from precise inter-satellite range rate measurements converted to different formats such as spherical harmonic coefficients and equiva...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013